James E. Rothman, Ph.D. ’76, Shares Nobel Prize for Medicine

Yale cell biologist, two others, are recognized for work on vesicles and cellular transport.

James E. Rothman, Ph. D. '76—now Wallace professor of biomedical sciences at Yale, chair of the medical school's department of cell biology, and founding director of Yale's nanobiology institute—has been awarded the 2013 Nobel Prize in Physiology or Medicine with Randy W. Schekman, of the University of California, Berkeley, and Thomas C. Südhof, of Stanford. The three scientists were recognized for "their discoveries of machinery regulating vesicle traffic, a major transport system in our cells."

According to Rothman's biography, he earned his Ph.D. degree in biological chemistry and was a student at Harvard Medical School from 1971 to 1973. From 1976 to 1978, he was a fellow in MIT's department of biology. From 1978 to 1988, he was a professor in the department of biochemistry at Stanford. He was Squibb professor of molecular biology at Princeton from 1988 to 1991 and then founded and chaired the department of cellular biochemistry and biophysics at Memorial Sloan-Kettering Cancer Center (1991-2004), where he served as vice-chairman of Sloan-Kettering. Before moving to Yale in 2008, Rothman was Wu professor of chemical biology and director of Columbia University’s Sulzberger Genome Center.

His biography cites discovery of 

key molecular machinery responsible for transfer of materials among compartments within cells, providing the conceptual framework for understanding such diverse and important processes as the release of insulin into the blood, communication between nerve cells in the brain, and the entry of viruses to infect cells. Numerous kinds of tiny membrane-enveloped vesicles ferry packets of enclosed cargo. Each type of vesicle must deliver its specialized cargo to the correct destination among the maze of distinct compartments that populate the cytoplasm of a complex animal cell. The delivery process, termed membrane fusion, is fundamental for physiology and medicine, as pathology in this process can cause metabolic, neuropsychiatric and other diseases. Rothman reconstituted vesicle budding and fusion in a cell-free system (1984) and discovered the complex of SNARE proteins (1993) which mediates membrane fusion and affords it specificity. He also uncovered the GTPase-switch mechanism which controls coated vesicle budding in the cell (1991).

You might also like

Harvard Students form Pro-Palestine Encampment

Protesters set up camp in Harvard Yard

Harvard Medalists

Three people honored for extraordinary service to the University

Talking About Tipping Points

Developing response capability for a climate emergency

Most popular

The Homelessness Public Health Crisis

Homelessness has surged in the United States, with devastating effects on the public health system.

Harvey Mansfield’s Last Class

After 60 years on the faculty, Harvard’s famous conservative is retiring.

Harvard Students form Pro-Palestine Encampment

Protesters set up camp in Harvard Yard

More to explore

What is the Best Breakfast and Lunch in Harvard Square?

The cafés and restaurants of Harvard Square sure to impress for breakfast and lunch.

How Homelessness is a Public Health Crisis

Homelessness has surged in the United States, with devastating effects on the public health system.

Portfolio Diet May Reduce Long-Term Risk of Heart Disease and Stroke, Harvard Researchers Find

A little-known diet improves cardiovascular health through several distinct mechanisms.